Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The field of 2D materials has grown dramatically in the past two decades. 2D materials can be utilized for a variety of next-generation optoelectronic, spintronic, clean energy, and quantum computing applications. These 2D structures, which are often exfoliated from layered van der Waals materials, possess highly inhomogeneous electron densities and can possess short- and long-range electron correlations. The complexities of 2D materials make them challenging to study with standard mean-field electronic structure methods such as density functional theory (DFT), which relies on approximations for the unknown exchange-correlation functional. To overcome the limitations of DFT, highly accurate many-body electronic structure approaches such as diffusion Monte Carlo (DMC) can be utilized. In the past decade, DMC has been used to calculate accurate magnetic, electronic, excitonic, and topological properties in addition to accurately capturing interlayer interactions and cohesion and adsorption energetics of 2D materials. This approach has been applied to 2D systems of wide interest, including graphene, phosphorene, MoS2, CrI3, VSe2, GaSe, GeSe, borophene, and several others. In this review article, we highlight some successful recent applications of DMC to 2D systems for improved property predictions beyond standard DFT.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available March 18, 2026
- 
            Abstract Lack of rigorous reproducibility and validation are significant hurdles for scientific development across many fields. Materials science, in particular, encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website:https://pages.nist.gov/jarvis_leaderboard/more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
